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Abstract

Two series of nanocrystalline powders of PrCo1 − xFexO3 (x = 0.1, 0.3, 0.5, 0.7 and 0.9) of high purity were obtained by
sol-gel citrate method at 700 and 800 °C. The formation of continuous solid solution with an orthorhombic
perovskite structure (sp. group Pbnm) was observed. A peculiarity of the PrCo1 − xFexO3 solid solution is the lattice
parameter crossovers, which occurred at certain compositions and revealed in the pseudo-tetragonal or pseudo-
cubic metric. An average crystallite size of the PrCo1 − xFexO3 samples estimated from the analysis of the angular
dependence of the X-ray diffraction (XRD) line broadening varies between 30 and 155 nm, depending on the
composition and synthesis temperature.
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Background
Complex oxides with perovskite structure RMO3, where R
and M are rare earth and transition metals, respectively,
represent an important class of the functional materials.
In particular, the “pure” and mixed rare earth cobaltites
and ferrites are used in thermoelectric devices; solid oxide
fuel cells, as membranes for partial oxidation of methane;
and cleaning oxygen, as catalysts and sensory materials
[1–5]. The interest in the rare earth cobaltites RCoO3 is
also stimulated by their unique fundamental physical prop-
erties, such as different types of magnetic ordering and
temperature-induced metal-insulator (MI) transitions con-
jugated with the spin-state transitions of Co3+ ions [6, 7].
These transitions are strongly affected by the chemical
pressure caused by the exchange of cations either in A- or
B-sites of perovskite structure [8–10].
Among the mixed rare earth cobaltites-ferrites

RCo1 − xFexO3, the most extensively studied is a sys-
tem with La [10–12], whereas information about
phase and structural behaviour in the systems with
other rare earths is rather limited. Our recent investi-
gations of structural and thermal behaviour of the mixed
cobaltites-ferrites with R=Pr, Nd, Sm and Eu obtained by a

standard ceramic technique at 1200–1300 °C [13–16]
proved a formation of the continuous solid solution with
the orthorhombic perovskite structure. In situ high-
temperature X-ray synchrotron powder diffraction re-
vealed strong anomalies in the lattice expansion, which
are especially pronounced in cobalt-rich specimens. They
are reflected in a sigmoidal dependence of the unit cell di-
mensions, in extra increment of the unit cell volume and
in clear maxima of the thermal expansion coefficients
[16–19]. These anomalies are related to the changes in
spin state of Co3+ ions and conjugated MI transitions.
They become less pronounced with the decreasing of the
cobalt content in the RCo1 − xFexO3 series.
Here, we report the results of structural characterization

of nanocrystalline cobaltites-ferrites PrCo1 − xFexO3 pre-
pared by sol-gel citrate route.

Methods
Nanocrystalline powders of PrCo1 − xFexO3 (x = 0.1,
0.3, 0.5, 0.7 and 0.9) were prepared by sol-gel citrate
method. Crystalline Pr(NO3)3·6H2O (99.99 %, Alfa Aesar),
Co(NO3)2·6H2O (ACS, Alfa Aesar), Fe(NO3)3·9H2O
(ACS, Alfa Aesar) and a citric acid (CC) were dis-
solved in water and mixed in the molar ratio of
n(Pr3+):n(Co2+):n(Fe3+):n(CC) = 1:(1 − х):х:4 according
to the PrCo1 − xFexO3 nominal compositions. Pre-
pared solutions were gelled at ~90 °C and
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subsequently treated at the temperatures of 700 and
800 °C for 2 h. Thus, two series of the samples were
obtained. Spot-check examination of the cationic
composition of the samples was performed by energy
dispersive X-ray fluorescence (EDXRF) analysis by
using XRF Analyzer Expert 3L.
Laboratory X-ray powder diffraction investigation

was performed on the Huber imaging plate Guinier
camera G670 (Cu Kα1 radiation, λ = 1.54056 Å). The
high-resolution X-ray synchrotron powder diffraction
examination was performed for the PrCo0.5-
Fe0.5O3@700 °C and PrCo0.5Fe0.5O3@800°C samples
with equiatomic amount of Co and Fe. Correspond-
ing experiments were carried out at the beamline

ID22 of ESRF (Grenoble, France) during the beam-
time allocated to the Experiment N° MA-2320. All
crystallographic calculations were performed by means of
the programme package WinCSD [20], which was also used
for the evaluation of microstructural parameters of the
samples. The average grain size of the powders (D) and lat-
tice strains <ε> = <Δd>/d were estimated from the analysis
of angular dependence of the X-ray diffraction (XRD) pro-
file broadening by using the external Si standard for the
correction of instrumental broadening. The morphology
of the nanoaggregates was investigated by scanning
electron microscopy (SEM) by means of an ESEM FEI
Quanta 200 FEGi system operated in a low-vacuum
mode (70 Pa) and at an acceleration voltage of 15 kV
(FEI Company, Eindhoven, NL). The samples were
mounted onto conductive carbon tapes adhered on
aluminium holders. High-resolution images were ob-
tained using an Everhart-Thornley detector (ETD) for
secondary electrons or a solid-state backscattered elec-
tron (SSD-BSE) detector.

Results and Discussion
According to X-ray powder diffraction examination
of both series of the mixed cobaltites-ferrites PrCo1
− xFexO3 obtained at 700 and 800 °C, all the samples
synthesized were single phase and possess an ortho-
rhombic perovskite structure isotypic with GdFeO3

(Fig. 1). Only in the iron-rich specimen PrCo0.1-
Fe0.9O3@800°C the traces of the unidentified para-
sitic phases could be detected. EDXRF examination
of the sample with nominal composition PrCo0.5-
Fe0.5O3 revealed 70.96(9) wt.% of Pr, 14.98(7) wt.% of
Co and 14.06(7) wt.% of Fe, which corresponds to
0.998(2):0.503(3):0.499(3) molar ratio of the metal
components.

Fig. 1 X-ray powder diffraction patterns of PrCo1 − xFexO3 samples
synthesized at 800 °C

Fig. 2 X-ray synchrotron powder diffraction pattern of PrCo0.5Fe0.5O3@800 °C (λ = 0.35434 Å). Experimental (dots) and calculated patterns;
difference profiles and positions of the diffraction maxima are given

Pekinchak et al. Nanoscale Research Letters  (2016) 11:75 Page 2 of 6



Full profile Rietveld refinement, performed in space
group Pbnm, led to an excellent agreement between cal-
culated and experimental profiles for all PrCo1 − xFexO3

samples. In the refinement procedure, the unit cell di-
mensions and positional and displacement parameters of
atoms were refined together with background and peak
profile parameters and correction of absorption and in-
strumental zero shift. No significant difference in the
structural parameters was found between two series of
the samples.
Precise high-resolution X-ray synchrotron powder

diffraction examination confirms phase purity of
PrCo0.5Fe0.5O3 samples obtained at 700 and 800 °C.
No traces of foreign phases were detected in both
samples even applying this very sensitive diffraction
technique.
In spite of superb resolution (typical HWFM of

the reflections of Si standard are in the limits of
0.003–0.006 2θo), no reflection splitting was ob-
served at the PrCo0.5Fe0.5O3@700°C and PrCo0.5-
Fe0.5O3@800°C diffraction patterns due to the rather
pseudo-cubic metric of the orthorhombic lattice and
essential nanocrystalline size effect on the XRD line
broadening.

Table 1 Lattice parameters, coordinates and displacement parameters of atoms in PrCo1 − xFexO3 (space group Pbnm)

Atoms,
sites

Parameters,
residuals

x in PrCo1 − xFexO3

0.1 0.3 0.5 (Lab-XRD) 0.5 (Synch-XRD) 0.7 0.9

a, Å 5.3845(2) 5.4044(2) 5.4281(2) 5.4290(1) 5.4544(2) 5.4767(2)

b, Å 5.3559(2) 5.3944(1) 5.4406(2) 5.4413(1) 5.4980(2) 5.5519(2)

c, Å 7.5903(3) 7.6297(2) 7.6735(3) 7.6759(2) 7.7246(3) 7.7699(3)

Pr, 4c x −0.0035(4) −0.0042(4) −0.0026(7) −0.0059(2) −0.0057(4) −0.0066(3)

y 0.02944(9) 0.03134(9) 0.0334(1) 0.03285(8) 0.0380(1) 0.0427(1)

z ¼ ¼ ¼ ¼ ¼ ¼

Biso, Å
2 0.78(1) 1.02(1) 1.02(2) 0.699(6) 1.18(2) 1.19(2)

Fe/Co, 4b x 0 0 0 0 0 0

y ½ ½ ½ ½ ½ ½

z 0 0 0 0 0 0

Biso, Å
2 0.94(2) 1.03(2) 0.64(3) 0.43(2) 0.71(3) 0.61(3)

O1, 4c x 0.053(2) 0.036(2) 0.031(3) 0.063(2) 0.044(2) 0.091(2)

y 0.4966(10) 0.4960(8) 0.4992(11) 0.4866(10) 0.4926(10) 0.4856(12)

z ¼ ¼ ¼ ¼ ¼ ¼

Biso, Å
2 0.37(8) 0.656(3) 0.885(4) 1.8(3) 0.857(2) 0.977(3)

O2, 8d x −0.2937(12) −0.3070(12) −0.302(2) −0.2866(11) −0.3017(14) −0.2767(15)

y 0.2772(14) 0.2771(14) 00.277(2) 0.2787(11) 0.2861(14) 0.3013(12)

z 0.0382(10) 0.0440(10) 0.0496(13) 0.0426(8) 0.4482(10) 0.4651(11)

Biso, Å
2 0.37(8) 0.656(2) 0.885(3) 0.75(12) 0.857(2) 0.977(2)

RI 0.042 0.047 0.054 0.039 0.061 0.043

RP 0.088 0.092 0.123 0.091 0.112 0.125

Fig. 3 Projection of PrCo0.5Fe0.5O3 structure on (001) plane
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However, structural parameters of both samples were
successfully refined by the full profile Rietveld method in
space group Pbnm. As an example, the graphical results of
the Rietveld refinement of PrCo0.5Fe0.5O3@800 °C struc-
ture are presented in Fig. 2.
Table 1 contains the results of the Rietveld refinement

of the PrCo1 − xFexO3 samples obtained at 800 °C by
using laboratory X-ray and synchrotron powder diffrac-
tion data.
Similar to the “pure” PrCoO3 and PrFeO3 com-

pounds, crystal structure of the mixed cobaltites-
ferrites PrCo1 − xFexO3 can be described as a
framework of corner-shared MO6 (M = Co/Fe) octahe-
dra with the Pr atoms occupying holes between them.
A projection of the PrCo0.5Fe0.5O3 structure along
[001]-direction is shown in Fig. 3.
The analysis of the concentration dependence of the

unit cell dimensions of the sol-gel-obtained PrCo1 −
xFexO3 samples (Fig. 4, solid symbols) proves the forma-
tion of continuous solid solution, similar to those
observed recently for the mixed praseodymium
cobaltites-ferrites obtained by standard ceramic tech-
nique (Fig. 4, open symbols) [13, 16]. Peculiarity of the
PrCo1 − xFexO3 solid solution is a lattice parameter cross-
over that occurred at a certain composition, which
becomes apparent in the pseudo-tetragonal or pseudo-
cubic unit cell dimensions (Fig. 4). The reason for this
phenomenon, which was earlier also observed in the re-
lated rare earth aluminates, gallates and titanates-

chromites [21–26], is the different cell parameter ratios
within the same orthorhombic GdFeO3 type of structure
observed for the end members of these series.
Microstructural parameters of two PrCo1 − xFexO3

series synthesized at 700 and 800 °C were evaluated
from the analysis of the XRD profile broadening by
using the external Si standard. Average grain size D
in both series is estimated to vary within the limit of
30–155 nm, depending on the composition and syn-
thesis temperature (Fig. 5). The D values in the
PrCo1 − xFexO3@700°C samples systematically decrease
with the increasing of iron content, whereas in the
PrCo1 − xFexO3@800°C series, this parameter goes
through the maximum at x = 0.5. In both series, the
increase of the lattice strains is observed with increas-
ing iron content (Fig. 5).
Scanning electron microscopy investigation of the

PrCo0.5Fe0.5O3 sample prepared at 800 °C (Fig. 6) re-
vealed a lacy morphology of the powder consisting of ir-
regular shaped 60–100-nm nanoparticles.

Conclusions
Two series of the nanocrystalline mixed cobaltites-
ferrites PrCo1 − xFexO3 (x = 0.1, 0.3, 0.5, 0.7 and 0.9) of
high phase purity were prepared by sol-gel citrate
method at 700 and 800 °C. The average grain size of the
powders estimated from the analysis of angular depend-
ence of the XRD line broadening varies between 30 and
155 nm, depending on the composition and synthesis
temperature. Refined structural parameters of the PrCo1
− xFexO3@700 °C and PrCo1 − xFexO3@800 °C series
prove the formation of continuous solid solution as it
was shown earlier for the similar series obtained by the
standard ceramic technique at 1300 °C. In comparison

Fig. 5 Microstructural parameters of the PrCo1 − xFexO3 series
synthesized at 700 and 800 °C

Fig. 4 Concentration dependencies of the normalized unit cell
dimensions of PrCo1 − xFexO3 series. Solid and open symbols correspond
to the samples synthesized by sol-gel technique at 800 °C and by
solid-state reactions at 1300 °C, respectively. The dashed lines are
guide for the eyes. The lattice parameters of the orthorhombic
cell are normalized to the perovskite one as follows: ap = ao/√2,
bp = bo/√2, cp = co/2, Vp = Vo/4
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with a traditional energy- and time-consuming high-
temperature solid-state synthesis technique, the low-
temperature sol-gel citrate method is a very promising
tool for the obtaining of fine powders of the mixed per-
ovskite oxide materials, free of contamination of con-
stituent metal oxides or other parasitic phases.
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